A New Carbon Material for Better Bioelectronics

Despite widespread clinical applications in drug delivery, biosensing, and tissue modulation—think pacemakers, glucose monitors, cochlear implants, electro-pharmaceutical therapies—bioelectronic devices tend to be rigid, power-inefficient, and mechanically and chemically invasive to living cells. Traditional materials like platinum, iridium oxide or titanium nitride tend to be bulky. Polymer-based materials can become electrochemically unstable on repeated use. While…

Read more

This website is using cookies to improve the user-friendliness. You agree by using the website further. Privacy policy

Skip to content